Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1360716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469306

RESUMO

Introduction: Cystic Fibrosis (CF) is the commonest genetically inherited disease (1 in 4,500 newborns) and 70% of people with CF (pwCF) harbour the F508Del mutation, resulting in misfolding and incorrect addressing of the channel CFTR to the epithelial membrane and subsequent dysregulation of fluid homeostasis. Although studies have underscored the importance and over-activation of myeloid cells, and in particular neutrophils in the lungs of people with CF (pwCF), relatively less emphasis has been put on the potential immunological bias in CF blood cells, at homeostasis or following stimulation/infection. Methods: Here, we revisited, in an exhaustive fashion, in pwCF with mild disease (median age of 15, median % FEV1 predicted = 87), whether their PBMCs, unprimed or primed with a 'non specific' stimulus (PMA+ionomycin mix) and a 'specific' one (live P.a =PAO1 strain), were differentially activated, compared to healthy controls (HC) PBMCs. Results: 1) we analysed the lymphocytic and myeloid populations present in CF and Control PBMCs (T cells, NKT, Tgd, ILCs) and their production of the signature cytokines IFN-g, IL-13, IL-17, IL-22. 2) By q-PCR, ELISA and Luminex analysis we showed that CF PBMCs have increased background cytokines and mediators production and a partial functional tolerance phenotype, when restimulated. 3) we showed that CF PBMCs low-density neutrophils release higher levels of granule components (S100A8/A9, lactoferrin, MMP-3, MMP-7, MMP-8, MMP-9, NE), demonstrating enhanced exocytosis of potentially harmful mediators. Discussion: In conclusion, we demonstrated that functional lymphoid tolerance and enhanced myeloid protease activity are key features of cystic fibrosis PBMCs.


Assuntos
Fibrose Cística , Recém-Nascido , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Citocinas , Linfócitos , Pulmão
2.
Am J Respir Cell Mol Biol ; 68(2): 186-200, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36194580

RESUMO

Eosinophils have been previously shown to be able to regulate early humoral responses during systemic vaccination. Here we investigated the role of eosinophils during pulmonary vaccination, comparing vaccine-induced responses in eosinophil-deficient (ΔdblGATA) and wild-type mice using a Th2 adjuvant. We observed that eosinophils were needed to induce a complete vaccine response, thereby eliciting specific antibody-secreting plasma cells in the regional lymph nodes and antibody secretion in the BAL at the early stage of the immune response. Reintroduction of eosinophils in the lungs of ΔdblGATA mice during the priming stage enhanced both specific IgM and IgG plasma cells but not specific IgA plasma cells. Upon vaccination, eosinophils migrated to the lungs and secreted cytokines involved in B-cell activation, which might promote antibody production. Importantly, however, the absence of eosinophils did not impair late immune responses in a prime/boost protocol because, in that setup, we uncovered a compensating mechanism involving a Th17 pathway. In conclusion, our data demonstrate for the first time a new role for eosinophils during lung mucosal vaccination, whereby they accelerate early immune responses (IgM and IgG) while regulating IgA production at the late stages.


Assuntos
Formação de Anticorpos , Eosinófilos , Camundongos , Animais , Eosinófilos/metabolismo , Pulmão/patologia , Vacinação , Imunoglobulina G , Imunoglobulina M , Imunoglobulina A/metabolismo , Camundongos Endogâmicos BALB C , Imunidade nas Mucosas
3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955566

RESUMO

Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, particularly in hospital patients undergoing ventilation and in individuals with cystic fibrosis. Although we and others have investigated mechanisms used by P.a to subvert innate immunity, relatively less is known about the potential strategies used by this bacterium to fight the adaptive immune system and, in particular, T cells. Here, using RAG KO (devoid of 'classical' αß and γδ TCR T lymphocytes) and double RAG γC KO mice (devoid of T, NK and ILC cells), we demonstrate that the lymphocytic compartment is important to combat P.a (PAO1 strain). Indeed, we show that PAO1 load was increased in double RAG γC KO mice. In addition, we show that PAO1 down-regulates IL-23 and IL-22 protein accumulation in the lungs of infected mice while up-regulating their RNA production, thereby pointing towards a specific post-transcriptional regulatory mechanism not affecting other inflammatory mediators. Finally, we demonstrate that an adenovirus-mediated over-expression of IL-1, IL-23 and IL-7 induced lung neutrophil and lymphocytic influx and rescued mice against P.a-induced lethality in all WT, RAG γC KO and RAG γC KO RAG-deficient mice, suggesting that this regimen might be of value in 'locally immunosuppressed' individuals such as cystic fibrosis patients.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Interleucina-23/metabolismo , Interleucinas , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa
4.
Mol Ther ; 30(1): 355-369, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371178

RESUMO

Pseudomonas aeruginosa (P.a) infections are a major public health issue in ventilator-associated pneumoniae, cystic fibrosis, and chronic obstructive pulmonary disease exacerbations. P.a is multidrug resistant, and there is an urgent need to develop new therapeutic approaches. Here, we evaluated the effect of direct pulmonary transplantation of gene-modified (elafin and interleukin [IL]-6) syngeneic macrophages in a mouse model of acute P.a infection. Wild-type (WT) or Elafin-transgenic (eTg) alveolar macrophages (AMs) or bone marrow-derived macrophages (BMDMs) were recovered from bronchoalveolar lavage or generated from WT or eTg mouse bone marrow. Cells were modified with adenovirus IL-6 (Ad-IL-6), characterized in vitro, and transferred by oropharyngeal instillation in the lungs of naive mice. The protective effect was assessed during P.a acute infection (survival studies, mechanistic studies of the inflammatory response). We show that a single bolus of genetically modified syngeneic AMs or BMDMs provided protection in our P.a-induced model. Mechanistically, Elafin-modified AMs had an IL-6-IL-10-IL-4R-IL-22-antimicrobial molecular signature that, in synergy with IL-6, enhanced epithelial cell proliferation and tissue repair in the alveolar unit. We believe that this innovative cell therapy strategy could be of value in acute bacterial infections in the lung.


Assuntos
Infecções por Pseudomonas , Animais , Elafina , Imunoterapia , Interleucina-6/genética , Pulmão/microbiologia , Macrófagos , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/genética
5.
Front Immunol ; 11: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117268

RESUMO

Individuals with impaired immune responses, such as ventilated and cystic fibrosis patients are often infected with Pseudomonas aeruginosa (P.a) bacteria, and a co-infection with the Influenza virus (IAV) is often present. It has been known for many years that infection with IAV predisposes the host to secondary bacterial infections (such as Streptococcus pneumoniae or Staphylococcus aureus), and there is an abundance of mechanistic studies, including those studying the role of desensitization of TLR signaling, type I IFN- mediated impairment of neutrophil chemokines and antimicrobial production, attenuation of IL1ß production etc., showing this. However, little is known about the mechanistic events underlying the potential deleterious synergy between Influenza and P.a co-infections. We demonstrate here in vitro in epithelial cells and in vivo in three independent models (two involving mice given IAV +/- P.a, and one involving mice given IAV +/- IL-1ß) that IAV promotes secondary P.a-mediated lung disease or augmented IL-1ß-mediated inflammation. We show that IAV-P.a-mediated deleterious responses includes increased matrix metalloprotease (MMP) activity, and MMP-9 in particular, and that the use of the MMP inhibitor improves lung resilience. Furthermore, we show that IAV post-transcriptionally inhibits the antimicrobial/anti-protease molecule elafin/trappin-2, which we have shown previously to be anti-inflammatory and to protect the host against maladaptive neutrophilic inflammation in P.a infections. Our work highlights the capacity of IAV to promote further P.a-mediated lung damage, not necessarily through its interference with host resistance to the bacterium, but by down-regulating tissue resilience to lung inflammation instead. Our study therefore suggests that restoring tissue resilience in clinical settings where IAV/P.a co-exists could prove a fruitful strategy.


Assuntos
Coinfecção/imunologia , Elafina/metabolismo , Vírus da Influenza A/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Pseudomonas aeruginosa/imunologia , Animais , Linhagem Celular , Coinfecção/induzido quimicamente , Coinfecção/metabolismo , Fibrose Cística/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Pneumonia/metabolismo , Infecções Estafilocócicas/imunologia
7.
Biomaterials ; 217: 119308, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31279103

RESUMO

Most of current influenza virus vaccines fail to develop a strong immunity at lung mucosae (site of viral entry) due to sub-optimal vaccination protocols (e.g. inactivated virus administered by parenteral injections). Mucosal immunity could be improved by using locally-delivered vaccines containing appropriate adjuvants. Here we show, in a mouse model, that inclusion of silver nanoparticles (AgNPs) in virus-inactivated flu vaccine resulted in reduction of viral loads and prevention of excessive lung inflammation following influenza infection. Concomitantly, AgNPs enhanced specific IgA secreting plasma cells and antibodies titers, a hallmark of successful mucosal immunity. Moreover, vaccination in the presence of AgNPs but not with gold nanoparticles, protected mice from lethal flu. Compared with other commercial adjuvants (squalene/oil-based emulsion) or silver salts, AgNPs stimulated stronger antigen specific IgA production with lower toxicity by promoting bronchus-associated lymphoid tissue (BALT) neogenesis, and acted as a bona fide mucosal adjuvant.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Imunoglobulina A/metabolismo , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Tecido Linfoide/imunologia , Nanopartículas Metálicas/química , Prata/química , Animais , Brônquios/imunologia , Cães , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/metabolismo , Humanos , Imunidade nas Mucosas/efeitos dos fármacos , Inflamação/patologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Tecido Linfoide/efeitos dos fármacos , Células Madin Darby de Rim Canino , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinação
8.
Sci Rep ; 9(1): 6516, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019198

RESUMO

Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Morbidity is mainly due to early airway infection. We hypothesized that S. aureus clearance during the first hours of infection was impaired in CF human Airway Surface Liquid (ASL) because of a lowered pH. The ASL pH of human bronchial epithelial cell lines and primary respiratory cells from healthy controls (WT) and patients with CF was measured with a pH microelectrode. The antimicrobial capacity of airway cells was studied after S. aureus apical infection by counting surviving bacteria. ASL was significantly more acidic in CF than in WT respiratory cells. This was consistent with a defect in bicarbonate secretion involving CFTR and SLC26A4 (pendrin) and a persistent proton secretion by ATP12A. ASL demonstrated a defect in S. aureus clearance which was improved by pH normalization. Pendrin inhibition in WT airways recapitulated the CF airway defect and increased S. aureus proliferation. ATP12A inhibition by ouabain decreased bacterial proliferation. Antimicrobial peptides LL-37 and hBD1 demonstrated a pH-dependent activity. Normalizing ASL pH might improve innate airway defense in newborns with CF during onset of S. aureus infection. Pendrin activation and ATP12A inhibition could represent novel therapeutic strategies to normalize pH in CF airways.


Assuntos
Brônquios/citologia , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bicarbonatos/química , Bicarbonatos/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Recém-Nascido , Mucosa Respiratória/química , Mucosa Respiratória/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Transportadores de Sulfato/metabolismo , Catelicidinas
9.
Front Immunol ; 9: 1675, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083156

RESUMO

Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, in particular, in hospital patients undergoing ventilation and in patients with cystic fibrosis. Among the virulence factors secreted or injected into host cells, the physiopathological relevance of type II secretions system (T2SS) is less studied. Although there is extensive literature on the destructive role of LasB in vitro on secreted innate immune components and on some stromal cell receptors, studies on its direct action on myeloid cells are scant. Using a variety of methods, including the use of bacterial mutants, gene-targeted mice, and proteomics technology, we show here, using non-opsonic conditions (thus mimicking resting and naïve conditions in the alveolar space), that LasB, an important component of the P.a T2SS is highly virulent in vivo, and can subvert alveolar macrophage (AM) activity and bacterial killing, in vitro and in vivo by downregulating important secreted innate immune molecules (complement factors, cytokines, etc.) and receptors (IFNAR, Csf1r, etc.). In particular, we show that LasB downregulates the production of C3 and factor B complement molecules, as well as the activation of reactive oxygen species production by AM. In addition, we showed that purified LasB impaired significantly the ability of AM to clear an unrelated bacterium, namely Streptococcus pneumoniae. These data provide a new mechanism of action for LasB, potentially partly explaining the early onset of P.a, alone, or with other bacteria, within the alveolar lumen in susceptible individuals, such as ventilated, chronic obstructive pulmonary disease and cystic fibrosis patients.

10.
ACS Nano ; 12(2): 1188-1202, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29357226

RESUMO

Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as an alternative to antivirals to treat human infectious diseases, especially influenza virus infections where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of an influenza virus infection of lung epithelial cells, that AgNPs down-regulated influenza induced CCL-5 and -IFN-ß release (two cytokines important in antiviral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the antiviral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent antiviral responses and up-regulation of IL-8-dependent antibacterial responses) may have practical implications for their use in the clinic.


Assuntos
Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/química , Mitocôndrias/efeitos dos fármacos , Orthomyxoviridae/efeitos dos fármacos , Prata/farmacologia , Tretinoína/farmacologia , Animais , Antivirais/química , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Mitocôndrias/metabolismo , Prata/química , Tretinoína/química
11.
Thorax ; 73(1): 49-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28790180

RESUMO

BACKGROUND: Pseudomonas aeruginosa lung infections are a huge problem in ventilator-associated pneumonia, cystic fibrosis (CF) and in chronic obstructive pulmonary disease (COPD) exacerbations. This bacterium secretes virulence factors that may subvert host innate immunity. OBJECTIVE: We evaluated the effect of P. aeruginosa elastase LasB, an important virulence factor secreted by the type II secretion system, on ion transport, innate immune responses and epithelial repair, both in vitro and in vivo. METHODS: Wild-type (WT) or cystic fibrosis transmembrane conductance regulator (CFTR)-mutated epithelial cells (cell lines and primary cells from patients) were treated with WT or ΔLasB pseudomonas aeruginosa O1 (PAO1) secretomes. The effect of LasB and PAO1 infection was also assessed in vivo in murine models. RESULTS: We showed that LasB was the most abundant protein in WT PAO1 secretomes and that it decreased epithelial CFTR expression and activity. In airway epithelial cell lines and primary bronchial epithelial cells, LasB degraded the immune mediators interleukin (IL)-6 and trappin-2, an important epithelial-derived antimicrobial molecule. We further showed that an IL-6/STAT3 signalling pathway was downregulated by LasB, resulting in inhibition of epithelial cell repair. In mice, intranasally instillated LasB induced significant weight loss, inflammation, injury and death. By contrast, we showed that overexpression of IL-6 and trappin-2 protected mice against WT-PAO1-induced death, by upregulating IL-17/IL-22 antimicrobial and repair pathways. CONCLUSIONS: Our data demonstrate that PAO1 LasB is a major P. aeruginosa secreted factor that modulates ion transport, immune response and tissue repair. Targeting this virulence factor or upregulating protective factors such as IL-6 or antimicrobial molecules such as trappin-2 could be beneficial in P. aeruginosa-infected individuals.


Assuntos
Proteínas de Bactérias , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/imunologia , Células Epiteliais/fisiologia , Imunidade Inata/fisiologia , Interleucina-6/fisiologia , Metaloendopeptidases , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
Front Immunol ; 8: 1029, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970832

RESUMO

Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. MG symptoms are characterized by muscle weaknesses. The thymus of MG patients is very often abnormal and possesses all the characteristics of tertiary lymphoid organs such as neoangiogenesis processes, overexpression of inflammatory cytokines and chemokines, and infiltration of B lymphocytes leading to ectopic germinal center (GC) development. We previously demonstrated that injections of mice with polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic double-stranded RNA mimicking viral infection, induce thymic changes and trigger MG symptoms. Upon Poly(I:C) injections, we observed increased thymic expressions of α-AChR, interferon-ß and chemokines such as CXCL13 and CCL21 leading to B-cell recruitment. However, these changes were only transient. In order to develop an experimental MG model associated with thymic GCs, we used Poly(I:C) in the classical experimental autoimmune MG model induced by immunizations with purified AChR emulsified in complete Freund's adjuvant. We observed that Poly(I:C) strongly favored the development of MG as almost all mice displayed MG symptoms. Nevertheless, we did not observe any ectopic GC development. We next challenged mice with Poly(I:C) together with other toll-like receptor (TLR) agonists known to be involved in GC development and that are overexpressed in MG thymuses. Imiquimod and CpG oligodeoxynucleotides that activate TLR7 and TLR9, respectively, did not induce thymic changes. In contrast, lipopolysaccharide that activates TLR4 potentiated Poly(I:C) effects and induced a significant expression of CXCL13 mRNA in the thymus associated with a higher recruitment of B cells that induced over time thymic B-lymphoid structures. Altogether, these data suggest that tertiary lymphoid genesis in MG thymus could result from a combined activation of TLR signaling pathways.

13.
Respir Res ; 17(1): 118, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27658724

RESUMO

The activity of cysteine cathepsin B increased markedly in lung homogenates and in bronchoalveolar lavage fluids (BALF) of the mouse model of bleomycin-induced lung fibrosis after 14 days of challenge. In contrast the level of the cysteine cathepsin inhibitor cystatin C was unaffected in BALF of wild-type and cathepsin B-deficient mice. Therefore, murine cystatin C is not a reliable marker of fibrosis during bleomycin-induced lung fibrosis. Current data are in sharp contrast to previous analysis carried on human BALF from patients with idiopathic pulmonary fibrosis, for which the level of cathepsin B remained unchanged while cystatin C was significantly increased.

14.
Oncotarget ; 7(7): 7550-62, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26771137

RESUMO

Abnormal overexpression of CXCL13 is observed in many inflamed tissues and in particular in autoimmune diseases. Myasthenia gravis (MG) is a neuromuscular disease mainly mediated by anti-acetylcholine receptor autoantibodies. Thymic hyperplasia characterized by ectopic germinal centers (GCs) is a common feature in MG and is correlated with high levels of anti-AChR antibodies. We previously showed that the B-cell chemoattractant, CXCL13 is overexpressed by thymic epithelial cells in MG patients. We hypothesized that abnormal CXCL13 expression by the thymic epithelium triggered B-cell recruitment in MG. We therefore created a novel transgenic (Tg) mouse with a keratin 5 driven CXCL13 expression. The thymus of Tg mice overexpressed CXCL13 but did not trigger B-cell recruitment. However, in inflammatory conditions, induced by Poly(I:C), B cells strongly migrated to the thymus. Tg mice were also more susceptible to experimental autoimmune MG (EAMG) with stronger clinical signs, higher titers of anti-AChR antibodies, increased thymic B cells, and the development of germinal center-like structures. Consequently, this mouse model finally mimics the thymic pathology observed in human MG. Our data also demonstrated that inflammation is mandatory to reveal CXCL13 ability to recruit B cells and to induce tertiary lymphoid organ development.


Assuntos
Linfócitos B/patologia , Quimiocina CXCL13/fisiologia , Inflamação/complicações , Miastenia Gravis Autoimune Experimental/patologia , Hiperplasia do Timo/fisiopatologia , Animais , Linfócitos B/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Citometria de Fluxo , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Técnicas Imunoenzimáticas , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miastenia Gravis Autoimune Experimental/etiologia , Miastenia Gravis Autoimune Experimental/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Autoimmun ; 56: 1-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25441030

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1ß levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1ß and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1ß, BAFF and IL-17A.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Fator Ativador de Células B/metabolismo , Bleomicina/efeitos adversos , Fibrose Pulmonar Idiopática/etiologia , Interleucina-17/metabolismo , Animais , Antibióticos Antineoplásicos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Fator Ativador de Células B/antagonistas & inibidores , Fator Ativador de Células B/deficiência , Fator Ativador de Células B/genética , Bleomicina/administração & dosagem , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Fibrose , Expressão Gênica , Fibrose Pulmonar Idiopática/patologia , Interleucina-17/genética , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Am J Clin Exp Immunol ; 2(1): 107-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23885328

RESUMO

Interleukin 1 is a critical inflammatory mediator and involved in host defense to several pathogens. Oral T. gondii infection causes lethal ileitis in C57BL/6 (BL6) mice and serves to investigate the mechanisms of acute intestinal inflammation. Here we show that IL-1 is expressed upon oral T. gondii (76K strain) infection in the small intestine and mediates ileitis as IL-1R1 deficient mice have reduced neutrophil recruitment in the lamina propria, parasite invasion, inflammatory lesions and enhanced survival as compared to BL6 infected control mice. Protection in the absence of IL-1R1 signaling was associated with reduced IFN-γ expression and preserved Paneth cells, while these cells were eliminated in infected BL6 mice. Furthermore, blockade of IL-1 by IL-1ß antibody attenuated inflammation in BL6 mice. In conclusion, IL-1 signaling contributes to the inflammatory response with increase IFN-γ expression and Paneth cell depletion upon oral T. gondii infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...